Amostra Aleatória Simples
O que é uma amostra aleatória simples?
Uma amostra aleatória simples é um subconjunto de uma população estatística na qual cada membro do subconjunto tem uma probabilidade igual de ser escolhido. Uma amostra aleatória simples deve ser uma representação imparcial de um grupo.
Principais vantagens
- Uma amostra aleatória simples leva um pequeno, porção aleatória de toda a população para representar todo o conjunto de dados, onde cada membro tem uma probabilidade igual de ser escolhido.
- Os pesquisadores podem criar uma amostra aleatória simples usando métodos como loterias ou sorteios aleatórios.
- Um erro de amostragem pode ocorrer com uma amostra aleatória simples se a amostra não acabar refletindo com precisão a população que deveria representar.
Amostra Aleatória Simples
Compreendendo a amostra aleatória simples
Os pesquisadores podem criar uma amostra aleatória simples usando alguns métodos. Com um método de loteria, cada membro da população recebe um número, após o qual os números são selecionados aleatoriamente.
Um exemplo de amostra aleatória simples seria os nomes de 25 funcionários escolhidos em um chapéu de uma empresa de 250 funcionários. Nesse caso, a população é de 250 funcionários, e a amostra é aleatória porque cada funcionário tem chances iguais de ser escolhido. A amostragem aleatória é usada na ciência para conduzir testes de controle aleatórios ou para experimentos cegos.
O exemplo em que os nomes de 25 funcionários entre 250 são escolhidos em um chapéu é um exemplo do método de loteria no trabalho. Cada um dos 250 funcionários receberia um número entre 1 e 250, depois disso, 25 desses números seriam escolhidos aleatoriamente.
Como os indivíduos que compõem o subconjunto do grupo maior são escolhidos aleatoriamente, cada indivíduo no grande conjunto de população tem a mesma probabilidade de ser selecionado. Isso cria, na maioria dos casos, um subconjunto equilibrado que carrega o maior potencial para representar o grupo maior como um todo, livre de qualquer preconceito.
Para populações maiores, um método de loteria manual pode ser bastante oneroso. A seleção de uma amostra aleatória de uma grande população geralmente requer um processo gerado por computador, pela qual a mesma metodologia do método de loteria é usada, apenas as atribuições de números e as seleções subsequentes são realizadas por computadores, não humanos.
Espaço para erro
Com uma amostra aleatória simples, deve haver espaço para erro representado por uma variância positiva e negativa (erro de amostragem). Por exemplo, se em uma escola secundária de 1, 000 alunos, uma pesquisa deveria ser realizada para determinar quantos alunos são canhotos, a amostragem aleatória pode determinar que oito dos 100 amostrados são canhotos. A conclusão seria que 8% da população estudantil do ensino médio é canhota, quando na verdade a média global estaria mais perto de 10%.
O mesmo é verdade, independentemente do assunto. Uma pesquisa sobre a porcentagem da população estudantil que tem olhos verdes ou está fisicamente incapacitada resultaria em uma probabilidade matemática baseada em uma pesquisa aleatória simples, mas sempre com uma variação positiva ou negativa. A única maneira de ter uma taxa de precisão de 100% seria pesquisar todos os 1, 000 alunos que, enquanto possível, seria impraticável.
Amostra Aleatória Simples vs. Amostra Aleatória Estratificada
Amostras aleatórias simples e amostras aleatórias estratificadas são ferramentas de medição estatística. Uma amostra aleatória simples é usada para representar toda a população de dados. Uma amostra aleatória estratificada divide a população em grupos menores, ou estratos, com base em características compartilhadas.
Ao contrário de amostras aleatórias simples, amostras aleatórias estratificadas são usadas com populações que podem ser facilmente divididas em diferentes subgrupos ou subconjuntos. Esses grupos são baseados em certos critérios, então, os elementos de cada um são escolhidos aleatoriamente em proporção ao tamanho do grupo em relação à população.
Este método de amostragem significa que haverá seleções de cada grupo diferente - cujo tamanho é baseado em sua proporção em relação à população inteira. Mas os pesquisadores devem garantir que os estratos não se sobreponham. Cada ponto na população deve pertencer a apenas um estrato, portanto, cada ponto é mutuamente exclusivo. A sobreposição de estratos aumentaria a probabilidade de que alguns dados sejam incluídos, distorcendo assim a amostra.
Vantagens e desvantagens de amostras aleatórias simples
Embora as amostras aleatórias simples sejam fáceis de usar, eles vêm com desvantagens importantes que podem tornar os dados inúteis.
Vantagens
A facilidade de uso representa a maior vantagem da amostragem aleatória simples. Ao contrário dos métodos de amostragem mais complicados, como amostragem aleatória estratificada e amostragem probabilística, não há necessidade de dividir a população em subpopulações ou tomar quaisquer outras medidas adicionais antes de selecionar os membros da população ao acaso.
Uma amostra aleatória simples deve ser uma representação imparcial de um grupo. É considerada uma forma justa de selecionar uma amostra de uma população maior, uma vez que cada membro da população tem chances iguais de ser selecionado.
Embora a amostragem aleatória simples pretenda ser uma abordagem imparcial para a pesquisa, pode ocorrer viés de seleção de amostra. Quando um conjunto de amostra da população maior não é inclusivo o suficiente, a representação da população total é distorcida e requer técnicas de amostragem adicionais.
Desvantagens
Um erro de amostragem pode ocorrer com uma amostra aleatória simples se a amostra não acabar refletindo com precisão a população que deveria representar. Por exemplo, em nossa amostra aleatória simples de 25 funcionários, seria possível desenhar 25 homens mesmo que a população consistisse em 125 mulheres e 125 homens.
Por esta razão, a amostragem aleatória simples é mais comumente usada quando o pesquisador sabe pouco sobre a população. Se o pesquisador soubesse mais, seria melhor usar uma técnica de amostragem diferente, como amostragem aleatória estratificada, o que ajuda a explicar as diferenças dentro da população, como idade, raça, ou gênero. Outras desvantagens incluem o fato de que, para amostragem de grandes populações, o processo pode ser demorado e caro em comparação com outros métodos.
Por que uma amostra aleatória simples é simples?
Não existe nenhum método mais fácil para extrair uma amostra de pesquisa de uma população maior do que a amostragem aleatória simples. Selecionar um número suficiente de indivíduos completamente ao acaso na população maior também produz uma amostra que pode ser representativa do grupo que está sendo estudado.
Quais são algumas desvantagens de uma amostra aleatória simples?
Entre as desvantagens desta técnica estão a dificuldade de acesso aos entrevistados que podem ser extraídos da população maior, mais tempo, maiores custos, e o fato de que o viés ainda pode ocorrer em certas circunstâncias.
O que é uma amostra aleatória estratificada?
Uma amostra aleatória estratificada, em contraste com um simples sorteio, primeiro divide a população em grupos menores, ou estratos, com base em características compartilhadas. Portanto, uma estratégia de amostragem estratificada garantirá que os membros de cada subgrupo sejam incluídos na análise de dados. A amostragem estratificada é usada para destacar as diferenças entre os grupos em uma população, em oposição à amostragem aleatória simples, que trata todos os membros de uma população como iguais, com igual probabilidade de serem amostrados.
Como as amostras aleatórias são usadas?
O uso de amostragem aleatória simples permite que os pesquisadores façam generalizações sobre uma população específica e deixem de fora qualquer tendência. Usando técnicas estatísticas, inferências e previsões podem ser feitas sobre a população sem ter que pesquisar ou coletar dados de cada indivíduo nessa população.
finança
-
Teorema do Limite Central (CLT)
O que é o Teorema do Limite Central (CLT)? Na teoria da probabilidade, o teorema do limite central (CLT) afirma que a distribuição de uma variável de amostra se aproxima de uma distribuição normal (...
-
Como completar um simples rollover do IRA para um Roth IRA
Você pode converter um IRA simples para aRoth IRA? Como alguém que está trabalhando para economizar para a aposentadoria, você provavelmente já ouviu falar que deve tentar economizar cerca de US$ 1 m...