P-Value
O que é P-Value?
Nas estatísticas, o valor p é a probabilidade de obter resultados pelo menos tão extremos quanto os resultados observados de um teste de hipótese estatística, assumindo que a hipótese nula está correta. O valor p é usado como uma alternativa aos pontos de rejeição para fornecer o menor nível de significância no qual a hipótese nula seria rejeitada. Um valor p menor significa que há evidências mais fortes a favor da hipótese alternativa.
Principais vantagens
- Um valor p é uma medida da probabilidade de que uma diferença observada possa ter ocorrido apenas por acaso.
- Quanto menor o valor p, quanto maior a significância estatística da diferença observada.
- O valor P pode ser usado como uma alternativa ou em adição aos níveis de confiança pré-selecionados para o teste de hipótese.
Como o valor P é calculado?
Os valores P são normalmente encontrados usando tabelas de valor p ou planilhas / software estatístico. Esses cálculos são baseados na distribuição de probabilidade presumida ou conhecida da estatística específica que está sendo testada. Os valores P são calculados a partir do desvio entre o valor observado e um valor de referência escolhido, dada a distribuição de probabilidade da estatística, com uma diferença maior entre os dois valores correspondendo a um valor p inferior.
Matematicamente, o valor p é calculado usando cálculo integral da área sob a curva de distribuição de probabilidade para todos os valores de estatísticas que estão pelo menos tão distantes do valor de referência quanto o valor observado é, em relação à área total sob a curva de distribuição de probabilidade. Em poucas palavras, quanto maior a diferença entre dois valores observados, menos provável é que a diferença se deva ao simples acaso aleatório, e isso é refletido por um valor p inferior.
Abordagem de valor-p para teste de hipóteses
A abordagem do valor p para o teste de hipótese usa a probabilidade calculada para determinar se há evidência para rejeitar a hipótese nula. A hipótese nula, também conhecido como conjectura, é a afirmação inicial sobre uma população (ou processo de geração de dados). A hipótese alternativa afirma se o parâmetro da população difere do valor do parâmetro da população declarado na conjectura.
Na prática, o nível de significância é estabelecido com antecedência para determinar quão pequeno o valor p deve ser para rejeitar a hipótese nula. Como diferentes pesquisadores usam diferentes níveis de significância ao examinar uma questão, um leitor pode às vezes ter dificuldade em comparar os resultados de dois testes diferentes. Os valores P fornecem uma solução para este problema.
Por exemplo, suponha que um estudo comparando os retornos de dois ativos específicos foi realizado por diferentes pesquisadores que usaram os mesmos dados, mas diferentes níveis de significância. Os pesquisadores podem chegar a conclusões opostas sobre se os ativos são diferentes. Se um pesquisador usasse um nível de confiança de 90% e o outro exigisse um nível de confiança de 95% para rejeitar a hipótese nula e o valor p da diferença observada entre os dois retornos fosse 0,08 (correspondendo a um nível de confiança de 92%) , então, o primeiro pesquisador descobriria que os dois ativos têm uma diferença que é estatisticamente significativa, enquanto o segundo não encontraria nenhuma diferença estatisticamente significativa entre os retornos.
Para evitar este problema, os pesquisadores poderiam relatar o valor p do teste de hipótese e permitir ao leitor interpretar a significância estatística por si mesmo. Isso é chamado de abordagem de valor p para teste de hipótese. Um observador independente poderia notar o valor p, e decidir por si mesmo se isso representa uma diferença estatisticamente significativa ou não.
Exemplo de P-Value
Um investidor afirma que o desempenho de sua carteira de investimentos é equivalente ao do índice Standard &Poor's (S&P) 500. Para determinar isso, o investidor realiza um teste bicaudal. A hipótese nula afirma que os retornos da carteira são equivalentes aos retornos do S&P 500 durante um período especificado, enquanto a hipótese alternativa afirma que os retornos da carteira e os retornos do S&P 500 não são equivalentes - se o investidor conduziu um teste unilateral, a hipótese alternativa afirmaria que os retornos da carteira são menores ou maiores que os retornos do S&P 500.
O teste de hipótese do valor p não faz uso necessariamente de um nível de confiança pré-selecionado no qual o investidor deve zerar a hipótese nula de que os retornos são equivalentes. Em vez de, fornece uma medida de quanta evidência existe para rejeitar a hipótese nula. Quanto menor o valor p, quanto maior a evidência contra a hipótese nula. Assim, se o investidor descobrir que o valor p é 0,001, há fortes evidências contra a hipótese nula, e o investidor pode concluir com segurança que os retornos da carteira e os retornos do S&P 500 não são equivalentes.
Embora isso não forneça um limite exato de quando o investidor deve aceitar ou rejeitar a hipótese nula, tem outra vantagem muito prática. O teste de hipótese do valor P oferece uma maneira direta de comparar a confiança relativa que o investidor pode ter ao escolher entre vários tipos diferentes de investimentos ou carteiras, em relação a um benchmark como o S&P 500.
Por exemplo, para dois portfólios, A e B, cujo desempenho difere do S&P 500 com valores p de 0,10 e 0,01, respectivamente, o investidor pode estar muito mais confiante de que a carteira B, com um valor p inferior, irá realmente mostrar resultados consistentemente diferentes.
finança
- Comércio social, a nova maneira de negociar ações
- Um trio de gadgets essenciais para investidores
- Seis opções de financiamento incríveis para empresas iniciantes
- Como o uso de robôs impactará o setor bancário
- Um argumento contra a hipótese de mercado eficiente
- A hipótese do mercado eficiente:você acredita?
- Hipótese de mercado eficiente:o mercado de ações é eficiente?
- P-Value
-
Moeda digital lastreada em ouro
O que é moeda digital lastreada em ouro? Na esteira do declínio no valor dos cripto-ativos tradicionais, Os crentes em criptografia estão constantemente em busca de novas oportunidades de investime...
-
Como os bancos podem reimaginar seus processos de negócios para oferecer experiência bancária personalizada em tempo real
Serviços Financeiros Globais O setor de serviços financeiros globais está à beira de uma ruptura significativa, com tecnologias de fantasia, como IA e blockchain, mudando rapidamente a forma como os...