Estatística Não Paramétrica
O que são estatísticas não paramétricas?
A estatística não paramétrica refere-se a um método estatístico no qual os dados não são considerados provenientes de modelos prescritos que são determinados por um pequeno número de parâmetros; exemplos de tais modelos incluem o modelo de distribuição normal e o modelo de regressão linear. As estatísticas não paramétricas às vezes usam dados que são ordinais, o que significa que não depende de números, mas sim em uma classificação ou ordem de classificação. Por exemplo, uma pesquisa transmitindo as preferências do consumidor variando de gostar a não gostar seria considerada um dado ordinal.
As estatísticas não paramétricas incluem estatísticas descritivas não paramétricas, modelos estatísticos, inferência, e testes estatísticos. A estrutura do modelo de modelos não paramétricos não é especificada a priori mas, em vez disso, é determinado a partir de dados. O termo não paramétrico não significa que esses modelos carecem de parâmetros, mas sim que o número e a natureza dos parâmetros são flexíveis e não fixados com antecedência. Um histograma é um exemplo de estimativa não paramétrica de uma distribuição de probabilidade.
Principais vantagens
- As estatísticas não paramétricas são fáceis de usar, mas não oferecem a precisão exata de outros modelos estatísticos.
- Esse tipo de análise costuma ser mais adequado quando se considera a ordem de algo, onde, mesmo que os dados numéricos mudem, os resultados provavelmente permanecerão os mesmos.
Compreendendo as estatísticas não paramétricas
Nas estatísticas, as estatísticas paramétricas incluem parâmetros como a média, desvio padrão, Correlação de Pearson, variância, etc. Esta forma de estatística usa os dados observados para estimar os parâmetros da distribuição. Em estatísticas paramétricas, os dados são frequentemente assumidos como provenientes de uma distribuição normal com parâmetros desconhecidos μ (média da população) e σ2 (variância da população), que são então estimados usando a média da amostra e a variância da amostra.
As estatísticas não paramétricas não fazem suposições sobre o tamanho da amostra ou se os dados observados são quantitativos.
As estatísticas não paramétricas não pressupõem que os dados sejam extraídos de uma distribuição normal. Em vez de, a forma da distribuição é estimada sob esta forma de medição estatística. Embora existam muitas situações em que uma distribuição normal pode ser assumida, existem também alguns cenários em que o verdadeiro processo de geração de dados está longe de ser distribuído normalmente.
Exemplos de estatísticas não paramétricas
No primeiro exemplo, considere um analista financeiro que deseja estimar o valor em risco (VaR) de um investimento. O analista reúne dados de ganhos de centenas de investimentos semelhantes em um horizonte de tempo semelhante. Em vez de presumir que os ganhos seguem uma distribuição normal, ela usa o histograma para estimar a distribuição de forma não paramétrica. O 5º percentil desse histograma fornece ao analista uma estimativa não paramétrica do VaR.
Para um segundo exemplo, Considere um pesquisador diferente que deseja saber se a média de horas de sono está relacionada à frequência com que alguém fica doente. Porque muitas pessoas raramente ficam doentes, se em tudo, e outras pessoas ocasionalmente ficam doentes com muito mais frequência do que a maioria dos outros, a distribuição da frequência da doença é claramente não normal, sendo inclinado para a direita e propenso a outliers. Assim, em vez de usar um método que assume uma distribuição normal para a frequência de doenças, como é feito na análise de regressão clássica, por exemplo, o pesquisador decide usar um método não paramétrico, como a análise de regressão quantílica.
Considerações Especiais
As estatísticas não paramétricas ganharam valor devido à sua facilidade de uso. À medida que a necessidade de parâmetros é aliviada, os dados se tornam mais aplicáveis a uma variedade maior de testes. Este tipo de estatística pode ser usado sem a média, tamanho da amostra, desvio padrão, ou a estimativa de quaisquer outros parâmetros relacionados quando nenhuma dessas informações estiver disponível.
Uma vez que as estatísticas não paramétricas fazem menos suposições sobre os dados da amostra, sua aplicação é mais ampla em escopo do que estatísticas paramétricas. Nos casos em que o teste paramétrico é mais apropriado, métodos não paramétricos serão menos eficientes. Isso ocorre porque as estatísticas não paramétricas descartam algumas informações que estão disponíveis nos dados, ao contrário das estatísticas paramétricas.
finança
- 6 Estatísticas de dívida de cartão de crédito de estudante universitário
- 32 Estatísticas de automação comercial para 2021
- Mais de 25 estatísticas de economia compartilhada para compartilhar em 2021
- 15 estatísticas de empréstimo de carro para conduzir em 2021
- Mais de 33 estatísticas incríveis de compras on-line em 2021
- 39 estatísticas fascinantes de seguro de vida para conhecer em 2021
- Estatísticas de receita do YouTube de 2021:reproduza vídeo!
- Mais de 25 estatísticas de acidentes de carro:aperte o cinto!
-
Mais de 19 estatísticas de gastos da geração do milênio
Os hábitos de consumo dos millennials são, bem… …diferente dos Baby Boomers. Os millennials são os próximos da fila para se tornarem os gastadores mais essenciais do mercado. É por isso que as e...
-
Estatísticas de desigualdade de renda dos EUA para saber em 2021
A diferença de riqueza na América está aumentando? Em uma palavra, sim. A classe média na América hoje está pior do que seus pais. Analisamos as estatísticas de desigualdade de renda dos EUA e f...